EVOLUTION AND DETACHMENT OF SLOWLY
GROWING DROPS AND BUBBLES
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The deformation of the free surface is considered for a slowly growing drop or bubble with
a horizontal solid wall (either continuous or having a circular hole). The volume at the in-
stant of detachment is determined. It is assumed that the liquid is subject to surface ten-
sion and gravitational forces.

1. Consider a liquid drop (gas bubble) of axially symmetrical shape on the lower (or upper) surface
of a solid horizontal plate subject to capillary forces and gravitation of strength ng €=9.81 m/sec? nis
the overload factor), the gravitational force being directed vertically downwards. The plate may be con-
tinuous or have a circular hole of radius r, with its center at the axis of symmetry (Fig. 1).

We assume that the volume of the drop or bubble increases slowly, e.g., due to condensation or evap-
oration of the liquid or forced injection of the liquid or gas through the hole in the plate. We assume that
the growth rate is so small that the inertial forces can be neglected relative to gravitation and surface
tension.

Under these conditions we need to determine the deformation of the free surface and the critical
value v* of the volume at which the drop or bubble is detached, The problem will be considered as aquasi-
static one, It is formulated as follows: find the equilibrium shape of the drop (bubble) if the volume of
liquid (gas) at a given instant is v subject to given values for the surface tension o, density p, and wetting
angle o5 find the value v=v* at which the corresponding equilibrium state becomes unstable.

The value of v* is the volume of the drop or bubble at the instant of detachment, not the volume de-~
tached. It is difficult to find the latter accurately without solving the dynamical problem.

This problem arises in various aspects of chemical technology [1, 2] and some aspects of space re-
search. The solution may be of value in examining the behavior of steam bubbles in boiling [3-71.

The present study is based on the results of [8-11]. The solution can be used as an illustration of
the use of the methods of [8~11] in problems on the behavior of drops (bubbles) in contact with solid sur-
faces of arbitrary axially symmetrical shape.

The set of all equilibrium forms for drops and gas bubbles coincides apart from mirror symmetry
with respect to the horizontal plane. The stability conditions also coincide, so in what follows we will con-
sider only a drop, although the results all apply equally well to bubbles.

2. 'Consider the shape of the free surface. Singly coupled axially symmetrical equilibrium surfaces
for a liquid in a gravitational field have been examined previously [8, 9], and such surfaces are uniquely
' : determined by their axial cross sections, namely, their equilibrium curves.
Lines 1-6 in Fig. 2 illustrate the behavior of the families of maximum real~
izable parts of the equilibrium curves in terms of the dimensional variables.

R=Vblr, Z=Vb?z (b=opngo, rr=z+y)

(see [8, 9] for more details of this family). These parts are bounded by the
line OWEF. If the equilibrium curve is not contained completely in the region
OWEF 0,then the corresponding equilibrium surface is certainly unstable {8, 10].
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zr I ] Each of the families of equilibrium curves has a corre-
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o ',77 ‘\w \mi sponding value of parameter C (lines 1~6 correspond to values
51,7 e ) of C of 0.6, 1.2, 1.8, 2,6, 3.5, 7.0, respectively). In determining
20 <= the droplet shape it is sufficient to consider the curves for which

C=0 (in determining bubble shape one can use the mirrorimages
of these curves with respect to the line Z =0; they correspond to
negative values of C).
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/
/ / / \ The shape of the free surface is uniquely determined by

/ // the coordinates Ra, Zp of the point of contact A between the

£ equilibrium curve and the solid wall or the coordinate Ry of

'0 ) %0 5 R that point and the value of the parameter C =Cy, on the equilib-

Fig. 2 . R . .

rium curve L. Each point Ry, Zp) in Fig. 2 corresponds to a
certain value of the angle 8 between the tangent to the equilib-
rium curve at point A and a definite value for the dimensionless
volume

n{ RdZ =V, (Cr, Ra),
L

where the integration is performed along L from point 0 to point A. The values of (RA, Zp) or (C1,, Rp)
must be chosen such that the drop has the specified value for the dimensionless volume V=[¢3/2 v

V=Vy(Cr, R4) (2.1)
and that the necessary condition for stable equilibrium is set at point A.

It is found [8, 11] that the stable equilibrium requires that the angle of contact equals the wetting
angle along the line of contact with the smooth surface. If the line of contact runs along a ridge in the
solid wall, the angle of contact should be not less than the corresponding wetting angle. In the case of a
drop hanging from a plate with a hole, these conditions can be put as

${Cr, Ray=a, if R, >R, 2.2)
ﬁ(CL: RA)QG, if RAxBO. (2'3)

Here Ry=v 15]1‘0 is the dimensionless radius of the hole.

For any given instant one can use known values for V, ¢, and R, with (2.1) and (2.2) and (2.3) to find
Cy, and R and the shape of the free surface. We use the method described in {9] and the graphs given
there for V,®) and S(R) for the set of values of C. The known values of o, n, ¢, and v are used to find V.
Then the V,(C, R) curves are used to draw the horizontal straight line V;=V, and from the values of (C,R)
at the points of intersection with the curves of the V,(C, R) family we construct the curve (C, R). Each
point (C, R) on this eurve corresponds to an equilibrium curve for some drop having the specified volume.
However, such a drop, in general, will not meet condition (2.2), (2.3) on the line of contact with the solid,

We identify the (C, R) for which (2.2) is met. For this purpose we calculate Ry, and on the 8(C, R)
curves we draw horizontal straight line 8=¢, R > R, and at the points of intersection with the g(C, R)
curves we derive a second C (R) curve. If these two C(R) curves have points of intersection, then each
point (C*, R*) corresponds to an equilibrium curve Cp,=C* Rp =R*, while the volume and angle of con~
tact have preset values, and the line of contact encompassesthe hole. To represent the shape of the equi-
librium curve one has to draw in Fig. 2 the point of contact for which R =Rp =R*, € =C1,=C*; this point
can be defined more precisely if we find the value Z =74 for it from the following equation [9]:

2Rysinfa = — Z R\ + CLRL + a-1V.
The value 85 =B(C*, R*) appearing there must be found via the S(C, R) relationships.

Consider now condition (2.3). On the 8(C, R) curves we draw a vertical straight line R=Ry, 0 =8=a
and use its points of intersection with the S(C, R) curves to construet a third C(R) curve. If this third
curve C (R) has points of intersection with the first C(R) curve, then each such point corresponds to an
equilibrium curve for a drop with given values for the volume and line of contact with the plate running
along the edge of the hole.

If the first of the C (R) curves does not intersect with the other two, this means that there are no
stable equilibrium forms for the drop under these conditions. If the constructions give one or several
equilibrium block forms, one has to verify whether these equilibrium forms are stable.

84



3. The stability conditions for equilibrium forms have previously been
examined [8, 10, 11] via the principle of minimum potential energy. These
" conditions may be formulated as follows for the present case:

Y f//ﬁi\

i
|
\ l 1) the equilibrium state will be stable for Ry > R, if the point of con~
|
J

i
|
{ . tact A shown in Fig. 2 with the coordinates (Rp, Z ) lies below the line OtETF;
v 50 20 bR R if A lies above that line, the equilibrium state is unstable, The point of con~
Fig. 3 tact A lies on the line OtEF in critical equilibrium states, and the loss of sta-

bility occurs in an axially symmetrical fashion (the equilibrium state is al-

ways unstable with respect to unsymmetrical perturbations that displace the
A drop as a whole in a horizontal direction, but such perturbations do not de-
' tach the drop and so are not considered).

corresponding point (Ra, Za) lies below the line OWEF and the condition
Ba <o is met. If point A lies above OWEF or if Bp >, then the equilibrium
\ 1 state is unstable. The critical equilibrium state (for g, <a) corresponds to
! points of contact Ry, Zp) that lie on the line OWETF; stability is lost on the
| OWE in an axially symmetrical fashion, and on EF in an unsymmetrical fash~-
ion, and at point e in either fashion.

120 2) The equilibrum state of the drop will be stable for Rp =R, if the
7
2

50

Here we have omitted the comparatively rare cases where point A’
lies on the curve OtE (for RA > Ry) or on the line OWEF (if RA =R, and fp <c)
or as fA=a (for Ry =Ry).

These stability conditions show that stable equilibrium states of a drop on a plate exist only for
Ry=Rp=3.83...

4, Consider the properties of the functions V (R, Z), B(R, Z) and their level lines. The behavior of
the surface shape in response to volume increase can be judged from the position of the point of contact
(Ras Zp) in Fig, 2, where the characteristic equilibrium curves 1-6 are accompanied by level lines for
g =constant (lines 7~14, which correspond to g of 5, 15, 30, 45, 60, 75, 90,and 105°), and parts of the lines
Vy=const (broken lines 15~22, on which V, takes the values 2.0, 3.42, 5.4, 8.0, 11.2, 14.8, 17.65,and 18.72,
respectively). The following points concern the disposition of these lines in Fig. 2. '

The function VR, Z) has a maximum at point E:
VIR, Z)VyRg, Zg)=18.96
for R, Z) lying below OWEF; on the Z =0 axis, the function V,([R, 0)=0, and Vi=%(R) on OWEF is shown
in Fig. 3. -

Each line V,=constant lying on or below OWEF has not more than one point of intersection and one
point of contact with each vertical line, and also not more than two points of intersection and one point of
contact with each line g =constant,

The points of contact of the curves V,;=const and straight lines R =const lie on the line OWE. If
Ry, Z4) is one of these points, then V (R4, Z) as a function of Z increases monotonically in the range 0 <
7Z =7, and has a local maximum at Z=2,,

Each line g=constant lying below OWEF has not more than two points of intersection and one point of
contact with each vertical line. The line §=0 is the broken line 0FE. The 8=f,(R) relation is shown by
curve 1 of Fig, 4 for the points of contact of the g=constant curve and R =constant straight lines.

At such points (R,, Z,;) we have
B(Ry, Z)>B(R,, Z)
for Z#Z, and (R,, Z) lying below OWEF.

The points of contact of the g=constant curves with the V,=const curves lie on the line 0tE; curve 2
of Fig. 4 shows g=1,(R) for these, while Fig. 5 shows V,=%,(p).

Numerical calculation confirms that VR, Z)| —const and V;(R, Z)IR=const have local minima, re-
spectively, at points on the curves 0tE and OwE, and this can be seen if one bears in mind that attainment
of the first local maximum and stability loss with respect to axially symmetrical perturbations will coin~
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cide in the corresponding problems. This was incorporated in [12],

Y T ¥
L\\ I ’ ; ; ]. where V¥ was determined for a sclid plate as the first maximum value
14— ' 2,4 ¢ of V4| g=const, using the tables [13] to construct V*(8) for 0=p=121°,
8? ;\ ‘o \ i This relationship (Fig. 5) for the complete range in 8 was constructed
’ ’ ’ \ : by another method in [8] (a misprint waflmade in formulating the
20 - e @ 1;0—#0 graph of V*(8) in [8]: it in fact shows 7~ 'V* (B)).
Fig.5 The detachment of a drop from the edge of a hole in a plate [2]

also gave the critical volume as the first maximum value of V, for
R =constant, together with the V* (Ry) relationship for Ry=2.5 (Fig. 3). This approach is correct only for
Ry=Rp =3.22, where the loss of stability has axial symmetry; if 3.22<R;< 3.83, unsymmetrical perturba-
tions are more hazardous, and stability is lost before the local maximum in V, R, Z) |R=const is reached.

5. We now describe the behavior of the drop shape and the critical volume in relation to the physical
parameters.,

Consider the case where the plate has no hole (Ry=0); in that case, condition (2.2) must be met at
point A, so the set of possible positions for point A in Fig. 2 will be the curve B(R, Z)=q. Let the initial
volume of the drop be zero. As the volume increases gradually, the point of contact Ry, Z,) will move
in Fig. 2 from the origin along the line SR, Z) =« until this line meets the curve 0tE. Here the dimension-
less volume reaches its maximum possible value for a given ¢, i.e., the critical value, and the drop be-
comes unstable [8] and part falls away. Then for a plate without a hole, the points of contact Ry, Zy) lie
on the line OtE for critical equilibrium states. As Bj =, the critical dimensionless volume as a function
of wetting angle takes the form

V*:‘g-Z(a‘)s
and Fig. 5 shows the curve, where one puts V;=V* and f=a.

We now consider the case where the plate has a hole Ry<Rp=3.83... (see Sec. 3). Initially, the
free surface is flat, and the line of contact with the plate runs along the edge of the hole. The point of con-
tact A will have the coordinates Ry =Ry, Zp =0. As 85 =0, we have for any 0<a< 7 that 85 < @, and Sec. 3
indicates that the initial equilibrium state will be stable. This equilibrium state corresponds to a drop of
zero volume, As the volume increases, point A in Fig. 2 begins to move upwards along the line R=R,,
while (2.3) is obeyed: Bp =a. Various cases can arise:

I. Ry<Ryz =3.22.

a) I;Ry) =a<wm; as B(Ry, Z)=I;[Ry), the condition S, = cannot be violated, and so A will move up-
ward along the line R =R, until it reaches the curve OWE, Then Secs. 3 and 4 indicate that the drop reaches
its maximum possitle volume (for stable axially symmetrical equilibrium states) of V=% (R;), and sta-
bility is lost when this is exceeded. The resulting motion of the liquid may cause part of the drop to break
away or the entire drop to transfer to a new equilibrium state. As the loss of stability has axial symmetry,
the resulting motions also must have axial symmetry, and the new stable equilibrium state will be of the
same type. However, for V> (R, such equilibrium states do not exist (see Sec. 4). Consequently, the
drop must break away, and hence,in this case the V* (Ry) relationship takes the form

V=g (Ry).
Figure 3 shows the curve, where one puts V,=V* and R=R,.

b) £,Ry) s =f;(Ry); in this case the line R =R, and the curve B8R, Z)=c have two points of intersec-
tion, which lie below OtE, Point A will move along the line R=R, up to the first of these points, and then
along the curve B(R, Z)=a (to the right of the vertical line R =R) to meet the vertical line R=R;, and then
again vertically upwards along this line to meet the line OWE, where stability is lost and the drop falls
away. The critical volume is as in case a), i.e., V*=F1(Ro).

¢) 0<a<fy(Rg); the straight line R=R, and the curve (R, Z) =« have either one or two points of inter-
section. The first of these lies below OtE, while the second lies above it., Point A will move vertically
upwards along R=R; to the first point of intersection, and then along the curve SR, Z)=a (to the right of
R =R,) until it reaches curve O0tE. Then Sec. 3 indicates that the volume V =&,(a) is reached, and the
drop loses stability. T is shown that the stability loss produces an axially symmetrical motion such that
the radius Ra of the line of contact falls, In such motion, this line may sit on the edge of the hole, and
the drop (after the transient) can take up a new equilibrium state, In Fig, 2 this state will correspond to a
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point A lying on the intersection of the curve V (R, Z)=%3(«) with the straight line R=R,. If Fua)>F (R0},
there is no such point of intersection (see Sec. 4). Therefore, the drop breaks away when the volume passes
through the value V=) . If Fy(a)<Fi(Ro) one cannot rule out in advance the possibility that the drop
will transfer to a new stable equilibrium state. The question can be decided by calculating the observed
stability of the equilibrium state, or else by examining the dynamical problem. If such a transition occurs,
the shape change will proceed as in case b), i.e., V¥=9"(Ry).

II. Ry>Ry =3.22,

a) f;(Ry) = <7; in that case, as in Ta, the condition By =@ cannot be violated, and the point A will
move upwards along the straight line R =R, until it meets the curve EF. Here the drop volume islargest
(for stable axially symmetrical equilibrium states corresponding to Ry =Ry). The value of the volume is

V=4(R,).

Then the stability loss occurs in an unsymmetrical fashion on line EF, so for given V> (R, the drop
may take a distorted stable form, which for V—#(R;) goes over continuously to the critical axially sym-
metrical form. However, a discussion of the branching of the equilibrium surfaces on the line EF (sub-
ject to the condition that the line of contact persists) indicates that this is not possible, so attainment of
the volume V=g (Ro) will mean detachment of the drop in whole or in part, or else jump to some com-
paratively remote unsymmetrical stable state. By virtue of the latter possibility, we can merely assume
that V*=4(R,) in this case. .

b) 0<a<f{(Ry); the initial stage of behavior is as in case Ib, while the final state is as in case Ila,

Consideration of the shape behavior of the free surface for a drop sitting on a circular hole shows
that:

1) in the case Ry=Rg

VE=F4(Ro), i [flR)<als;

while 1f 0<<a<<fs(Ro), then

VE=ga(a) for Fa(a)>Fi(Ro)

and ?2(@)<V*<g-1(30) for g_z(bl)<§_1(39)
2) inthe case Ry>Rp
V*=F(Rg).

We have V*=g,(a) if the drop hangs on a continuous plate.

For the gas bubble in a liquid with wetting angle o; =w~a the shape behavior will be as above for a
liguid with a wetting angle of a.
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