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The deformation of the free surface is considered for  a slowly growing drop or  bubble with 
a horizontal  solid wall (either continuous or  having a c i r cu la r  hole). The volume at the in- 
stant of detachment is determined.  It is assumed that the liquid is subject to surface ten-  
sion and gravitat ional  forces .  

1. Consider  a liquid drop (gas bubble) of axially symmet r i ca l  shape on the lower (or upper) surface 
of a solid horizontal  plate subject to capi l lary forces  and gravitat ion of strength ng (g =9.81 m / s e c  2, n is 
the overload factor) ,  the gravitat ional  force being directed ver t ical ly  downwards. The plate may be con- 
tinuous o r  have a c i r cu la r  hole of radius r 0 with its center  at the axis of symmet ry  (Fig. 1). 

We assume that the volume of the drop or  bubble increases  slowly, e.g., due to condensation or  evap- 
orat ion of the liquid or  forced injection of the liquid or  gas through the hole in the plate.  We assume that 
the growth rate is so small  that the inert ial  forces  can be neglected relative to gravitat ion and surface 
tension. 

Under these conditions we need to determine the deformation of the free surface and the cr i t ical  
value v* of the volume at which the drop or  bubble is detached. The problem will be considered as aquas i -  
static one. It is formulated as follows: find the equil ibrium shape of the drop (bubble) if the volume of 
liquid (gas) at a given instant is v subject to given values for  the surface tension g, density p, and wetting 
angle c~; find the value v =v* at which the corresponding equil ibrium state becomes unstable. 

The value of v* is the volume of the drop or  bubble at the instant of detachment, not the volume de- 
tached.  It is difficult to find the la t ter  accura te ly  without solving the dynamical problem. 

This problem a r i ses  in various aspects  of chemical  technology [1, 2] and some aspects  of space r e -  
search .  The solution may be of value in examining the behavior  of s team bubbles in boiling [3-7]. 

The present  study is based on the resul ts  of [8-11]. The solution can be used as an i l lustrat ion of 
the use of the methods of [8-11] in problems on the behavior  of drops (bubbles) in contact with solid su r -  
faces  of a rb i t r a ry  axially symmet r i ca l  shape. 

The set of all equil ibrium forms  for  drops and gas bubbles coincides apart  f rom m i r r o r  symmet ry  
with respect  to the horizontal  plane. The stability conditions also coincide, so in what follows we will con- 
s ider  only a drop, although the resul ts  all apply equally well to bubbles. 

2. C o n s i d e r  the shape of the free surface.  Singly coupled axially symmet r i ca l  equil ibrium surfaces  
for a liquid in a gravitat ional  field have been examined previously [8, 9], and such sur faces  are uniquely 
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Fig. 1 

determined by the i r  axial c ro s s  sections, namely, their  equil ibrium curves .  
Lines 1-6 in Fig. 2 i l lustrate the behavior  of the families of maximum rea l -  
izable par t s  of the equil ibrium curves in t e r m s  of the dimensional variables.  

B = ] / f ( r ,  Z = V ~ - ( z  (b = png/~, r ~- = x 2 + f )  

(see [8, 9] for  more  details of this family). These par t s  are  bounded by the 
line 0wEF. If the equil ibrium curve ts not contained completely in the region 
0wEF 0, then the corresponding equil ibrium surface is cer ta inly unstable [8, 10]. 
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Fig. 2 

Each of the famil ies  of equil ibrium curves  has a c o r r e -  
sponding value of p a r a m e t e r  C (lines 1-6 correspond to values 
of C of 0.6, !.2, 1.8, 2.6, 3.5, 7.0, respectively).  In determining 
the droplet shape it is sufficient to consider  the curves  forwhich 
C-> 0 (in determining bubble shape one can use the m i r r o r i m a g e s  
of these curves  with respect  to the line Z = 0; they cor respond to 
negative values of C). 

The shape of the free surface is uniquely determined by 
the coordinates R A, Z A of the point of contact A between the 
equil ibrium curve and the solid wall or  the coordinate R A of 
that point and the value of the p a r a m e t e r  C =C L on the equilib- 
r ium curve L. Each point (R A, ZA) in Fig. 2 cor responds  to a 
ce r ta in  value of the angle fl between the tangent to the equilib- 
r ium curve at point A and a definite value for  the dimensionless 
volume 

( R2dZ ---- V1 (CL, RA), 
L 

where the integration is pe r fo rmed  along L f rom point 0 to point A. The values of iRA, ZA) or  (C L, R A) 
must be chosen such that the drop has the specified value for  the dimensionless volume V----JsI3/2 v 

V=VI(CL, R>.) (2.1) 

and that the neces sa ry  condition for  stable equil ibrium is set at point A. 

R is found [8, 11] that the stable equil ibrium requires  that the angle of contact equals the wetting 
angle along the line of contact with the smooth surface.  If the line of contact runs along a ridge in the 
solid wall, the angle of contact should b e  not less  than the corresponding wetting angle. In the case of a 
drop hanging f rom a plate with a hole, these conditions can be put as 

~(CL, R a ) = a ,  if RA.~>Ro (2.2) 

~(CL, RA)~tZ, if RA_~/~0. (2.3) 

Here R 0 = V - ~ r  0 is the dimensionless radius of the hole. 

For any given instant one can use known values for V, ~, and R 0 with (2.1) and (2.2) and (2.3) to find 
C L and R A and the shape of the free surface. We use the method described in [9] and the graphs given 
there for VI(R) and fl(R) for the set of values of C. The known values of p, n, or, and v are used to find V. 
Then the VI(C, R) curves are used to draw the horizontal straight line V I =V, and from the values of (C, R) 
at the points of intersection with the curves of the VI(C, R) family we construct the curve (C, R). Each 
point (C, R) on this curve corresponds to an equilibrium curve for some drop having the specified volume. 
However, such a drop, in genera], will not meet condition (2.2), (2.3) on the line of contact with the solid. 

We identify the (C, R) for which (2.2) is met. For this purpose we calculate R 0, and on the /~(C, R) 
curves we draw horizontal straight line fl=~, R > R 0, and at the points of intersection with the fl(C, R) 
curves we derive a second C (R) curve. If these two C (R) curves have points of intersection, then each 
point (C*, R*) corresponds to an equilibrium curve CL=C*, R A =R*, while the volume and angle of con- 
tact have preset values, and the line of contact encompasses the hole. To represent the shape of the equi- 
librium curve one has to draw in Fig. 2 the point of contact for which R=R A =R*, C =CL=C*; this point 
can be defined more precisely if we find the value Z = Z A for it from the following equation [9]: 

2RA sin ~A = -- Z.tRA" + CLR~r 2 + ~-lV. 

The value flA =fl(C *, R*) appearing there must  be found via the fl(C, R) relationships.  

Consider  now condition (2.3). On the fl(C, R) curves  we draw a ver t ical  s traight  line R=R0, 0 - < f l ~  
and use its points of intersect ion with the fi(C, R) curves  r construct  a third C (R) curve,  ff this third 
curve C (R) has points of intersect ion with the f i rs t  C (R) curve, then each such point corresponds  to an 
equilibrium curve for a drop with given values for the volume and line of contact with the plate running 
along the edge of the hole. 

ff the f i rs t  of the C (R) curves  does not intersect  with the other two, this means that there are no 
stable equil ibrium forms for  the drop under these conditions, ff the construct ions give one o r  several  
equilibrium block forms,  one has to verify whether these equilibrium forms are  stable. 
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3. The stability conditions for  equil ibrium forms  havepreviously  been 
examined [8, 10, 11] via the principle of minimum potential energy.  These 

�9 conditions may be formulated as follows for  the present  case :  

1) the equil ibrium state will be stable for  R A > R 0 if the point of con- 
. tact  A shown in Fig. 2 with the coordinates  (R A, Z A) lies below the line 0tEF; 

if A lies above that line, the equil ibrium state is unstable. The point of con- 
tact  A lies on the line 0tEF incr i t ica l  equil ibrium states, and the loss of s ta-  
bility occurs  in an axially symmet r i ca l  fashion (the equilibrium state is' al-  
ways unstable with respect  to unsymmetr ica l  per turbat ions  that displace the 
drop as a whole in a horizontal direction, but such per turbat ions  do not de- 
tach the drop and so are not considered).  

2) The equil ibrum state of the drop will be stable for  R A =R 0 if the 
corresponding point (R A, ZA) lies below the line 0wEF and the condition 
flA <a  is met.  If point A lies above 0wEF or if flA > a '  then the equilibrium 

- - ]  state is unstable.  The cr i t ical  equil ibrium state (for flA <a) corresponds  to 
points of contact 0R A, Z A) that lie on the line 0wEF; stability is lost on the 

i OwE in an axially symmet r i ca l  fashion, and on EF in an unsymmetr ica l  fash-  R 
~on, and at point e in ei ther  fashion. 

Fig. 4 
Here we have omitted the comparat ively  ra re  cases  where point A 

l ies on the curve 0rE (for RA > R 0) or  on the line 0wEF (if RA =R0 and fiA <-~) 
or  as flA=~ ( fo rR  A=R0). 

These stability conditions show that stable equilibrium states of a drop on a plate exist only for 
R 0-<R F=3.83.. . 

4. Consider the properties of the functions VI(R , Z), fl(R, Z) and their level lines. The behavior of 
the surface shape in response to volume increase can be judged from the position of the point of contact 
(RA, ZA) in Fig. 2, where the characteristic equilibrium curves i-6 are accompanied by level lines for 

fl=constant (lines 7-14, which correspond to fl of 5, 15, 30, 45, 60, 75, 90,and 105~ and parts of the lines 
V1=const (broken lines 15-22, on which V i takes the values 2.0, 3.42, 5.4, 8.0, 11.2, 14.8, 17.65,and 18.72, 
respectively). The following points concern the disposition of these lines in Fig. 2. 

The function VI(R , Z) has a maximum at point E: 

VI(R, Z)~Vt(RE, Zz)=i8.96 

for (R, Z) lying below 0wEF; outhe Z =0 axis, the function VI(R , 0)=0, and VI=~r-I(R) on 0wEF is shown 
in Fig. 3. 

Each lim~ Vt =constant lying on or below 0wEF has not more than one point of intersection and one 
point of contact with each vertical line, and also not more than two points of intersection and one point of 
contact with each line fl = constant. 

The poins of contact of the curves Vt =const and straight lines R =const lie on the line OwE~ If 
(]El I, ZI) is one of these points, then VI(Rt, Z) as a function of Z increases monotonically in the range 0- < 
Z ~ Z I and has a local maximum at Z = Z I- 

Each lira. ~ fl=constant lying below 0wEF has not more than two points of intersection and one point of 
contact with each vertical line. The line fl=O is the broken line 0FE. The fl=f~(R) relation is shown by 
curve 1 of Fig. 4 for the points of contact of the fl=eonstant curve and R=constant straight lines. 

At such poiilts (R2, Z2) we have 

~(R~, Z~)>~(R~, Z) 

for Z~Z 2 and (R2, Z)lying below 0wEF. 

The poins of contact of the fl=constant curves with the V i =const curves lie on the line 0rE; curve 2 
of Fig. 4 shows fl=f~(R) for these, while Fig. 5 shows V,=~'~(~). 

Numerical calculation confirms that Vt (R, Z) I fl=const and Vl (R, Z) i R=const have local minima, re- 
spectively, at points on the curves 0rE and OwE, and this can be seen if one bears in mind that attainment 
of the first local maximum and stability loss with respect to axially symmetrical perturbations will coin- 
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cide in the corresponding problems.  This was incorporated in [12], 
! where V* was determined for  a solid plate as the f i rs t  maximum value 

of Vllfl=const,  using the tables [13] to const ruct  V*(fl) for  0-<fl-< 121 ~ 
This relationship {Fig. 5) for  the complete range in fl was constructed 
by another method in [8] (a misprint  was made in formulating the 
graph of V*~8) in [8]: it in fact shows ~r-IV * (~)): 

Fig.  5 The detachment of a drop f rom the edge of a hole in a plate [2] 
also gave the cr i t ical  volume as the f i rs t  maximum value of V 1 for  

R=constant ,  together  with the V* fRo) relationship for R0-< 2.5 {Fig. 3). This approach is co r r ec t  only for  
R 0-<R E = 3.22, where the loss of stability has axial symmetry ;  if 3.22 <R0< 3.83, unsymmet r ica l  pe r tu rba -  
tions are more  hazardous,  and stability is lost  before the local maximum in VI(R, Z) IR=const is reached. 

5. We now descr ibe the behavior of the drop shape and the cr i t ical  volume in relat ion to the physical  
pa r ame te r s .  

Consider  the case where the plate has no hole fR0=0); in that case,  condition {2.2) must  be met at 
point A, so the set of possible posit ions for  point A in Fig. 2 will be the curve fl(R, Z) =a. Let the initial 
volume of the drop be zero .  As the volume increases  gradually, the point of contact fRA, ZA) will move 
in Fig. 2 f rom the origin along the line flfR, Z) =a  until this line meets  the curve 0tE. Here the dimension- 
less  volume reaches  its maximum possible value for a given ~, i.e., the cr i t ica l  value, and the drop be-  
comes unstable [8] and par t  falls away. Then for  a plate without a hole, the points of contact fRA, ZA) lie 
on the line 0tE for cr i t ical  equilibrium states.  As flA =~' the cr i t ical  dimensionless volume as a function 
of wetting angle takes the form 

V* =gr~(~), 

and Fig. 5 shows the curve,  where one puts VI=V* and fl=a. 

We now consider  the case where the plate has a hole R 0 < R F = 3 . 8 3 . . .  {see Sec. 3). Initially, the 
free surface is flat, and the line of contact with the plate runs along the edge of the hole. The point of con- 
tact  A will have the coordinates  R A =R0, Z A =0. As flA =0, we have for  any 0<~<  ~r that flA < a ,  and Sec. 3 
indicates that the initial equilibrium state will be stable. This equil ibrium state cor responds  to a drop of 
zero  volume. As the volume increases ,  point A in Fig. 2 begins to move upwards along the line R =R 0, 
while (2.3) is obeyed: flA-<a- Various cases  can a r i se :  

I. Ro~Rz  =3.22. 

a) flfR0)-<a<~; as flfR0, Z)-<flfR0), the condition flA---a cannot be violated, and so A will move up- 
ward along the line R =R 0 until it reaches  the curve OwE. Then Sees. 3 and 4 indicate that the drop reaches  
its maximum possible volume (for stable axially symmet r ica l  equilibrium states) of V=Jri(Ro), and s ta-  
bility is lost when this is exceeded. The result ing motion of the liquid may cause par t  of the drop to break 
away or  the entire drop to t r ans fe r  to a new equilibrium state. As the loss of stability has axial symmetry ,  
the result ing motions also must have axial symmetry ,  and the new stable equil ibrium state will be of the 
same type. However, for  V>Srl(Ro) such equilibrium states do not exist  (see Sec. 4). Consequently, the 
drop must  break away, and hence, in this case the V* fR 0) relationship takes the fo rm 

V* =~h(Ro). 

Figure 3 shows the curve, where one puts V 1 =V* and R = R  0. 

b) f2fR0)--<~ -<fl fRO); in this case the line R =R 0 and the curve #fR, Z ) = a  have two points of in te rsec-  
tion, which lie below 0tE. Point A will move along the line R = R  0 up to the f i rs t  of these points, and then 
along the curve flfR, Z) =~ (to the right of the ver t ical  line R =R 0) to meet the vert ical  line R =R 0' and then 
again vert ical ly upwards along this line to meet  the line OwE, where stability is lost  and the drop falls 
away. The cr i t ical  volume is as in case a), i.e., V*----~'i(Ro). 

c) 0<~<f2fR0); the straight  line R = R  0 and the curve #fR, Z) =~ have ei ther  one or  two points o f in te r -  
section. The first  of these l ies below 0rE, while the second lies above it. Point A will move vert ical ly 
upwards along R =R 0 to the f irst  point of in tersect ion,  and then along the curve #fR, Z) =~ (to the right of 
R =R 0) until it reaches curve 0tE. Then See. 3 indicates that the volume V=Jr~(~) is reached, and the 
drop loses  stability. It is sho~a that the stability loss produces an axially symmet r ica l  motion such that 
the radius RA of the line of contact falls.  In such motion, this line may sit on the edge of the hole, and 
the drop (after the transient) can take up a new equil ibrium state. In Fig. 2 this state will cor respond to a 
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point A lying on the in tersect ion of the curve Vi(R, Z)=Sr'~(a) with the straight  line R =R 0. If ~(a)>3r~(Bo), 
there is no such point of in tersec t ion  (see Sec. 4). Therefore ,  the drop breaks  away when the volume passes  
through the value V=N"2(a) . If ~'2(a)<.Sri(Bo) one cannot rule out in advance the possibi l i ty that the drop 
will t r ans f e r  to a new stable equilii)rium state.  The question can be decided by calculating the observed 
stability of the equil ibrium state, or  else by examining the dynamical problem.  If such a transitiorl occurs ,  
the shape change will proceed as in case b), i.e., V*=sr'~(Ro). 

tL Bo>RE =3.22. 

a) f l (R0) -~  <r ;  in that case,  as in In, the condition fiA-<~ cannot be violated, and the point A wi'll 
move upwards along the s traight  line R =R 0 until it meets  the curve EF.  Here the drop volume is la rges t  
(.for stable axially symmet r i ca l  equil ibrium states corresponding to R A =R0). The value of the volume is 

V=~I(R0). 

Then the stability loss  occurs  in an unsymmet r ica l  fashion on line E F, so for given .V>~(B0)  the drop 
may take a distorted stable form, which for  V--->~'~(Ro) goes over  continuously to the cr i t ica l  axially sym-  
met r ica l  form.  However, a d iscuss ion of the branching of the equil ibrium surfaces  on the line EF (sub- 
ject to the condition that the line of contact pers i s t s )  indicates that this is not possible,  so attainment of 
the volume V=:~z'l(R0 ) will mean detachment of the drop in whole or  in part ,  or  else jump to some com-  
parat ively  remote  unsymmetr ica l  stable state.  By virtue of the la t ter  possibil i ty,  we can mere ly  assume 
that V*=~l(R0) in this case .  

b) 0<a<f~(R0); the initial stage of behavior  is as in case 113, whiIe the final state is as in case IIa. 

Considerat ion of the shape behavior  of the free surface for  a drop sitting on a c i r cu la r  hole shows 
that: 

1) in the case R 0 ~ R  E 

2) in the case R 0 > R E 

v*=.~"~(Ro), if /2(Ro)~<a<.~; 

V*=.~z-2(~) for ~z-2(a)>/.y~'~(R0) 

and ~ ( a ) ~ V * < ~ , ( n o )  for ~-~(a)<~dBo ) 

V* =5"~(R0). 

We have V* =5c~(~) if the drop hangs on a continuous plate. 

For  the gas bubble in a liquid with wetting angle c~ I =Tr-c~ the shape behavior  will be as above for  a 
liquid with a wetting angle of c~. 
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